skip to main content


Search for: All records

Creators/Authors contains: "Usta, Mustafa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given the complexity of human left heart anatomy and valvular structures, the fluid–structure interaction (FSI) simulation of native and prosthetic valves poses a significant challenge for numerical methods. In this review, recent numerical advancements for both fluid and structural solvers for heart valves in patient-specific left hearts are systematically considered, emphasizing the numerical treatments of blood flow and valve surfaces, which are the most critical aspects for accurate simulations. Numerical methods for hemodynamics are considered under both the continuum and discrete (particle) approaches. The numerical treatments for the structural dynamics of aortic/mitral valves and FSI coupling methods between the solid Ωs and fluid domain Ωf are also reviewed. Future work toward more advanced patient-specific simulations is also discussed, including the fusion of high-fidelity simulation within vivo measurements and physics-based digital twining based on data analytics and machine learning techniques. 
    more » « less
  2. Abstract

    We develop a machine learning tool useful for predicting the instantaneous dynamical state of sub-monomer features within long linear polymer chains, as well as extracting the dominant macromolecular motions associated with sub-monomer behaviors of interest. We employ the tool to better understand and predict sub-monomer A2 domain unfolding dynamics occurring amidst the dominant large-scale macromolecular motions of the biopolymer von Willebrand Factor (vWF) immersed in flow. Results of coarse-grained Molecular Dynamics (MD) simulations of non-grafted vWF multimers subject to a shearing flow were used as input variables to a Random Forest Algorithm (RFA). Twenty unique features characterizing macromolecular conformation information of vWF multimers were used for training the RFA. The corresponding responses classify instantaneous A2 domain state as either folded or unfolded, and were directly taken from coarse-grained MD simulations. Three separate RFAs were trained using feature/response data of varying resolution, which provided deep insights into the highly correlated macromolecular dynamics occurring in concert with A2 domain unfolding events. The algorithm is used to analyze results of simulation, but has been developed for use with experimental data as well.

     
    more » « less